The Stöber process is a chemical process used to prepare silica () particles of controllable and monodisperse for applications in materials science. It was pioneering when it was reported by Werner Stöber and his team in 1968, and remains today the most widely used wet chemistry synthetic approach to silica nanoparticles. It is an example of a sol-gel process wherein a molecular precursor (typically tetraethylorthosilicate) is first hydrolysis in an alcoholic solution, the resulting molecules then condensation to build larger structures. The reaction produces silica particles with diameters ranging from 50 to 2000 nanometre, depending on conditions. The process has been actively researched since its discovery, including efforts to understand its kinetics and mechanisma particle aggregation model was found to be a better fit for the experimental data than the initially hypothesized LaMer model. The newly acquired understanding has enabled researchers to exert a high degree of control over particle size and distribution and to fine-tune the physical properties of the resulting material in order to suit intended applications.
In 1999 a two-stage modification was reported that allowed the controlled formation of silica particles with small holes. The process is undertaken at low pH in the presence of a surfactant. The hydrolysis step is completed with the formation of a microemulsion before adding sodium fluoride to nucleation the condensation process. The non-ionic surfactant is calcination to produce empty pores, increasing the surface area and altering the surface characteristics of the resulting particles, allowing for much greater control over the physical properties of the material. Development work has also been undertaken for larger pore structures such as macropore monoliths, shell-core particles based on polystyrene, cyclen, or polyamines, and carbon spheres.
Silica produced using the Stöber process is an ideal material to serve as a model for studying colloid phenomena because of the monodisperse (uniformity) of its particle sizes. Nanoparticles prepared using the Stöber process have found applications including in the drug delivery to intracellular and in the preparation of . Porous silica Stöber materials have applications in catalysis and liquid chromatography due to their high surface area and their uniform, tunable, and highly ordered pore structures. Highly effective thermal insulators known as can also be prepared using Stöber methods, and Stöber techniques have been applied to prepare non-silica aerogel systems. Applying supercritical drying techniques, a Stöber silica aerogel with a specific surface area of 700 m2⋅g−1 and a density of 0.040 g⋅cm−3 can be prepared. NASA has prepared silica aerogels with a Stöber-process approach for both the Mars Pathfinder and Stardust missions.
Further hydrolysis of the ethoxy groups and subsequent condensation leads to . It is a one-step process as the hydrolysis and condensation reactions occur together in a single reaction vessel.
The process affords microscopic particles of colloidal silica with diameters ranging from 50 to 2000 nanometer; are fairly uniform with the distribution determined by the choice of conditions such as reagent concentrations, catalysts, and temperature. Larger particles are formed when the concentrations of water and ammonia are raised, but with a consequent broadening of the particle-size distribution. The initial concentration of TEOS is inversely proportional to the size of the resulting particles; thus, higher concentrations on average lead to smaller particles due to the greater number of nucleation sites, but with a greater spread of sizes. Particles with irregular shapes can result when the initial precursor concentration is too high. The process is temperature-dependent, with cooling (and hence slower ) leading to a monotonic increase in average particle size, but control distribution cannot be maintained at overly low temperatures.
The two-step Stöber process begins with a mixture of TEOS, water, alcohol, and a nonionic surfactant, to which hydrochloric acid is added to produce a microemulsion. This solution is allowed to stand until hydrolysis is complete, much like in the one-step Stöber process but with the hydrochloric acid replacing the ammonia as catalyst. Sodium fluoride is added to the resulting homogeneous solution, initiating the condensation reaction by acting as nucleation seed. The silica particles are collected by filtration and calcined to remove the nonionic surfactant template by combustion, resulting in the mesoporous silica product.
The selection of conditions for the process allows for control of pore sizes, particle diameter, and their distributions, as in the case of the one-step approach. Porosity in the modified process is controllable through the introduction of a swelling agent, the choice of temperature, and the quantity of sodium fluoride catalyst added. A swelling agent (such as mesitylene) causes increases in volume and hence in pore size, often by solvent absorption, but is limited by the solubility of the agent in the system. Pore size varies directly with temperature, bound by the lower out of the surfactant cloud point and the boiling point of water. Sodium fluoride concentration produces direct but non-linear changes in porosity, with the effect decreasing as the added fluoride concentration tends to an upper limit.
Under an aggregation-based model, nucleation sites are continually being generated and absorbed where the merging leads to particle growth. The generation of the nucleation sites and the interaction energy between merging particles dictates the overall kinetics of the reaction. The generation of the nucleation sites follows the equation below:
Merging of nucleation sites between particles is influenced by their interaction energies. The total interaction energy is dependent on three forces: electrostatic repulsion of like charges, vanderWaals attraction between particles, and the effects of solvation. These interaction energies (equations below) describe the particle aggregation process and demonstrate why the Stöber process produces particles that are uniform in size.
The van der Waals attraction forces are governed by the following equation:
This model for controlled growth aggregation fits with experimental observations from small-angle X-ray scattering techniques and accurately predicts particle sizing based on initial conditions. In addition, experimental data from techniques including microgravity analysis and variable pH analysis agree with predictions from the aggregate growth model.
Varying the surfactant concentration allows control over the diameter and volume of pores, and thus of the surface area of the product material. Increasing the amount of surfactant leads to increases in total pore volume and hence particle surface area, but with individual pore diameters remaining unchanged. Altering the pore diameter can be achieved by varying the amount of ammonia used relative to surfactant concentration; additional ammonia leads to pores with greater diameters, but with a corresponding decrease in total pore volume and particle surface area. The time allowed for the reaction to proceed also influences porosity, with greater reaction times leading to increases in total pore volume and particle surface area. Longer reaction times also lead to increases in overall silica particle size and related decreases in the uniformity of the size distribution.
The creation of the polystrene/silica core composite particles begins with creation of the silica cores via the one-step Stöber process. Once formed, the particles are treated with oleic acid, which is proposed to react with the surface silanol groups. Styrene is polymerized around the fatty-acid-modified silica cores. By virtue of size distribution of the silica cores, the styrene polymerizes around them evenly resulting composite particles are similarly sized.
The silica shell particles created with cyclen and other polyamine are created in a much different fashion. The polyamines are added to the Stöber reaction in the initial steps along with the TEOS precursor. These ligands interact with the TEOS precursor, resulting in an increase in the speed of hydrolysis; however, as a result they get incorporated into the resulting silica colloids. The ligands have several nitrogen sites that contain lone pairs of electrons that interact with the hydrolyzed end groups of TEOS. Consequently, the silica condense around the ligands encapsulating them. Subsequently, the silica/ligand capsules stick together to create larger particles. Once all of the ligand has been consumed by the reaction the remaining TEOS aggregates around the outside of the silica/ligand nanoparticles, creating a solid silica outer shell. The resultant particle has a solid silica shell and an internal core of silica-wrapped ligands. The sizes of the particles cores and shells can be controlled through selection of the shape of the ligands along with the initial concentrations added to the reaction.
The process provides a convenient approach to preparing silica nanoparticles for applications including intracellular drug delivery
One method to produce a silica aerogel uses a modified Stöber process and supercritical drying. The product appears translucent with a blue tinge as a consequence of Rayleigh scattering; when placed in front of a light source, the transmitted light becomes yellowish because the blue one has been scattered. This aerogel has a surface area of 700 m2⋅g−1 and a density of 0.040 g⋅cm−3; by way of contrast, the density of air is 0.0012 g⋅cm−3 (at 15 °C and 1 atm).
Silica aerogels held 15 entries for materials properties in the Guinness World Records in 2011, including for best insulator and lowest-density solid, though aerographite took the latter title in 2012.
Aerographene, with a density of just 13% of that of room temperature air and less dense than helium gas, became the lowest-density solid yet developed in 2013. Stöber-like methods have been applied in the preparation of aerogels in non-silica systems. NASA has developed silica aerogels with a polymer coating to reinforce the structure, producing a material roughly two orders of magnitude stronger for the same density, and also polymer aerogels, which are flexible and can be formed into a bendable thin film.
|
|